
Mysteries of the Deep (Computing
Messaging Framework): What happens

inside of MPI on BGP and why it matters

Jeff Hammond

Leadership Computing Facility
Argonne National Laboratory

24 January 2011

Jeff Hammond DCMF and MPI on BGP

The view from the boat

Jeff Hammond DCMF and MPI on BGP

A reason to dive

Jeff Hammond DCMF and MPI on BGP

But not too deep

Jeff Hammond DCMF and MPI on BGP

Blue Gene/P Communication architecture

DCMF is used to implement MPI(CH2), Charm++, ARMCI,
GASNet, etc. It provides active-messages, RDMA and collectives.

All operations are nonblocking by default (except when specific
hardware is blocking, e.g collective networks).

Jeff Hammond DCMF and MPI on BGP

Performance results

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

Testing injection (send) bandwidth along 1 to 6 links.

Explicitly mapped to torus using r = MPIX torus2rank(x,y,z,t)

Pre-post receives (blocking or nonblocking followed by sleep)

Nonblocking send followed by waitall.

No repetition in test but warmup along all 6 links done first.

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 500

 1000

 1500

 2000

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - blocking receive

1 link
2 links
3 links
4 links
5 links
6 links

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 38

 76

 114

 152

 190

 228

 266

 304

 342

 380

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - 1 link

blocking
nonblocking

blockings with interrupts
nonblocking with interrupts

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 76

 152

 228

 304

 380

 456

 532

 608

 684

 760

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - 2 links

blocking
nonblocking

blockings with interrupts
nonblocking with interrupts

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 114

 228

 342

 456

 570

 684

 798

 912

 1026

 1140

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - 3 links

blocking
nonblocking

blockings with interrupts
nonblocking with interrupts

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 152

 304

 456

 608

 760

 912

 1064

 1216

 1368

 1520

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - 4 links

blocking
nonblocking

blockings with interrupts
nonblocking with interrupts

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 190

 380

 570

 760

 950

 1140

 1330

 1520

 1710

 1900

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - 5 links

blocking
nonblocking

blockings with interrupts
nonblocking with interrupts

Jeff Hammond DCMF and MPI on BGP

Neighbor exchange

 0

 228

 456

 684

 912

 1140

 1368

 1596

 1824

 2052

 2280

 1 10 100 1000 10000 100000 1e+06

ba
nd

w
id

th
 (

M
B

/s
)

message size (bytes)

MPI neighbor exchange - 6 links

blocking
nonblocking

blockings with interrupts
nonblocking with interrupts

Jeff Hammond DCMF and MPI on BGP

Environment variables

Jeff Hammond DCMF and MPI on BGP

DCMF Verbosity

DCMF DMA VERBOSE
Control the output of information associated with the Direct Memory
Access messaging device. Specifically, it controls whether informational
RAS events are generated when remote get resources become full and are
increased in size. Disabled by default.

DCMF STATISTICS
Turns on statistics printing for the message layer such as the maximum
receive queue depth. Disabled by default.

DCMF VERBOSE
Increases the amount of information dumped during an MPI Abort() call.
Disabled by default.

Jeff Hammond DCMF and MPI on BGP

DCMF High-level tuning options

DCMF INTERRUPTS
Turns on interrupt driven communications. This can be beneficial to
some applications and is required if you are using asynchronous (e.g.
one-sided) or irregular codes. Disabled by default.

If interrupts improve the performance of your code, you’re doing a lot of
MPI nonblocking send and/or recv that do not match in time. Interrupts
introduce significant overhead in some cases and will slow down codes
with well-structured communication.

DCMF EAGER
Sets the cutoff for the switch to the rendezvous protocol. Switches from
the eager protocol to the rendezvous protocol for point-to-point
messaging. Increasing the limit might help for larger partitions and if
most of the communication is nearest neighbor. Default is 1200 bytes.

The eager protocol does not require the receiver to post or be in an MPI
call. It requires buffering and will cause problems for larger messages.

Jeff Hammond DCMF and MPI on BGP

DCMF High-level tuning options

DCMF OPTRVZ
Determines the optimized rendezvous limit. For sending, one of three
protocols will be used depending on the message size: The eager protocol
for small messages, the optimized rendezvous protocol for medium
messages, and the default rendezvous protocol for large messages. The
optimized rendezvous protocol generally has less latency than the default
rendezvous protocol, but does not wait for a receive to be posted first.
Therefore, unexpected messages in this size range might be received,
consuming storage until the receives are issued. The default rendezvous
protocol waits for a receive to be posted first. Therefore, no unexpected
messages in this size range will be received. The optimized rendezvous
protocol also avoids filling injection fifos which can cause delays while
larger fifos are allocated, for example, alltoall on large subcommunicators
with thread mode multiple will benefit from optimized rendezvous.
Default is 0 bytes (disabled).

Jeff Hammond DCMF and MPI on BGP

DCMF Low-level tuning options

DCMF FIFOMODE
The fifo mode to use. This determines how many injection fifos are used
by messaging and what they are used for:

DEFAULT: Uses 22 injection fifos:

6 normal fifos, each mapped to 1 torus fifo.
6 remote get fifos, each mapped to 1 torus fifo.
6 all-to-all fifos. These can inject into any of the torus fifos.

RZVANY: Optimized for sending messages that use the rendezvous
protocol. It has 6 more remote get fifos optimized for sending
around corners:

6 normal fifos, each mapped to 1 torus fifo.
6 remote get fifos, each mapped to 1 torus fifo.
6 remote get fifos, each mapped to all of the torus fifos.
6 all-to-all fifos.

ALLTOALL: Optimized for All-To-All communications. Same as
DEFAULT, except there are 16 All-To-All fifos that can inject into
any of the torus fifos:

Jeff Hammond DCMF and MPI on BGP

DCMF Low-level tuning options

DCMF RECFIFO
The size, in bytes, of each DMA reception FIFO. Incoming torus packets
are stored in this fifo until DCMF Messaging can process them. Making
this larger can reduce torus network congestion. Making this smaller
leaves more memory available to the application. DCMF Messaging uses
one reception FIFO. The value specified is rounded up to the nearest
32-byte boundary. Default is 8388608 bytes (8 megabytes).

If you see RAS events telling you to increase this variable, do not listen!
Blowing up the DMA reception FIFOs is a sign of poor communication
patters in your code. Using more memory just obscures the problem, but
it is not a solution.

The right way to solve this problem is to restructure your code to do

communication properly — preposted receives are essential, mixing MPI

and computation more often is useful — and if that is too much work,

enable interrupts.

Jeff Hammond DCMF and MPI on BGP

DCMF Low-level tuning options

BE MPI (ERROR): print job errtext() - last event:

APPL 0A2B A DMA unit reception FIFO is full. Automatic

recovery occurs for this event, but performance might be

improved by increasing the FIFO size (via environment

variable DCMF RECFIFO=size-in-bytes) or by checking the

DMA FIFOs more often. Additional details: 1) torus

location is (3,0,1). 2) Packet PID is 0. 3) rFIFO bit

mask is 0b00000001. 4) Current fifo size is 8388608

bytes.

Two choices:

1 Increase the FIFO size.

2 Check the DMA FIFOs more often.

The right answer is (2). Besides restructuring communication, you can
poke the network with MPI Iprobe using an unused tag.

Jeff Hammond DCMF and MPI on BGP

DCMF Collective options

DCMF COLLECTIVES
Controls whether optimized collectives are used.
Options are 0, 1 (default) or NOTREE.

Bbefore disabling the tree altogether, see DCMF THREADED TREE
and DCMF TREE HELPER THRESH.

DCMF BARRIER,BCAST,ALLTOALL,REDUCE,. . .
Controls whether optimized collectives are used.
Options are MPICH and many optimized protocols.

Setting DCMF COLLECTIVES=0 or any specific collective to MPICH is
a great way to slow your code down! There are more useful options in
some cases. . .

Jeff Hammond DCMF and MPI on BGP

DCMF Collective options

DCMF ALLGATHER Controls the protocol used for allgather.

MPICH Use the unoptimized MPICH point-to-point protocol.

ALLREDUCE Use collective network allreduce. Default on MCW
for smaller messages.

ALLTOALL Use all-to-all. Default on irregular communicators. It
works very well for larger messages.

BCAST Use bcast. Default for larger messages on MCW. This can
work well on rectangular subcommunicators for smaller messages.

ASYNC Use async bcast. This will use asynchronous broadcasts to
do the allgather. This is a good option for small messages on
rectangular or irregular subcommunicators.

It is not clear what the best algorithm is, but IBM has done some work
to figure it out. MPI Allgather is a case where the defaults are not
always optimal and one has to switch the defaults (Nick Romero can
show you how) or by tricking MPI (by changing datatype).

Jeff Hammond DCMF and MPI on BGP

DCMF Collective options

DCMF SAFEALLGATHER,SAFEALLGATHERV
DCMF SAFEBCAST,SAFESCATTERV,SAFEALLREDUCE
The direct put bandwidth optimization protocols require the send/recv
buffers to be 16-byte aligned on all nodes. Unfortunately, you can have
root’s buffer be misaligned from the rest of the nodes. Therefore, by
default we must do an allreduce before the dput protocol to ensure all
nodes have the same alignment. If you know all of your buffers are 16
byte aligned, turning on this option will skip the allreduce step and
improve performance. If the application uses well-behaved datatypes, you
can set this option to skip over the allreduce. This is most useful in
irregular subcommunicators where the allreduce can be expensive.

Enabled (N) by default. Use Y to bypass the allreduce, but mismatched
alignment will lead to undefined and/or erroneous results.

Jeff Hammond DCMF and MPI on BGP

Optimizing collectives through thinking

MPI Reduce scatter: reduce a buffer to root, then scatter from root.
This MPI-2.1 function requires vector arguments, so this is really reduce,
then scatterv. MPI Scatterv is not optimized. In addition, the arguments
to scatterv must be allocated internally. At scale, this consumes a lot of
memory (perhaps as much as 8x).

MPI Reduce scatter block: reduce a buffer to root, then scatter from
root. This MPI-2.2 function takes scalar arguments and therefore uses
less memory at scale. Blue Gene/P only provides MPI 2.1.

MPI Allreduce: reduce a buffer everywhere, then copy out my portion.
This MPI-1 function requires scalar arguments and is highly optimized on
Blue Gene/P. Using MPI IN PLACE means no extra memory is used
(although the input buffer is modified).

At least on regular communicators on BGP, allreduce+copy is much faster
than reduce+scatter. On BGQ, allreduce will be faster than reduce. . .

Jeff Hammond DCMF and MPI on BGP

Time for an oxygen tank

Jeff Hammond DCMF and MPI on BGP

DCMF Sample program

Both Initialize MPI (DCMF internally) and setup message protocols.

This is what happens when the message is small enough to be buffered at
the receiver (EAGER protocol).

Sender
DCMF Send to R
(Wait on local completion)
Local completion callback
—
—
—
(Wait on remote completion)
Remote completion callback

Receiver
—
—
—
Short message callback
Process buffer
DCMF Control to S

Jeff Hammond DCMF and MPI on BGP

DCMF Sample program

Larger messages require buffering (RNDZV protocol).

Sender
DCMF Send to R
(Wait on local completion)
Local completion callback
—
—
—
—
—
—
(Wait on remote completion)
Remove completion callback

Receiver
—
—
—
Long message callback
Allocate buffer for transfer
〈DMA〉 (rget)
Cleanup callback
Process buffer
DCMF Control to S

Jeff Hammond DCMF and MPI on BGP

Look at example code

Jeff Hammond DCMF and MPI on BGP

DCMF Sample program

0: sending 1 bytes

0: before DCMF Send

0: local completion cb

0: after DCMF Send

0: after local completion

0: after remote completion

0: remote completion cb peer=1

1: default short cb peer=0 count=0

1: src[0] = X

0: sending 200000 bytes

0: before DCMF Send

0: after DCMF Send

0: local completion cb

0: after local completion

0: after remote completion

0: remote completion cb peer=1

1: default long cb peer=0 count=0

1: default long cleanup cb peer=0

1: recv buffer[0] = X

1: recv buffer[1] = X

...........................

1: recv buffer[199998] = X

1: recv buffer[199999] = X

Jeff Hammond DCMF and MPI on BGP

Closing thoughts

“People first, then money, then things” – Suze Orman

“Science first, then algorithms, then communication” – Me

However, you know your algorithms are good and
communication is holding you back, understanding the
internals of MPI will help you write faster and more scalable
code on Blue Gene/P.

P.S. If profiling shows you spend too much time in
MPI Barrier, your algorithm is the problem (load imbalance),
not communication.

Jeff Hammond DCMF and MPI on BGP

